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0.1 Executive Summary

This study examines data from the Klamath River at Keno and Miller to determine the
impact of weather conditions and river flow on the thermal stratification of the water
column. We recommend employing generalized additive models and random forest
models for this purpose. Furthermore, either k-means clustering or the distribution of
the temperature difference variable can be utilized to establish a threshold for thermal
stratification. Our findings, however, do not result in a full solution and analysis due
to the incomplete nature of the dataset utilized.

0.2 Introduction and Background

The present study aims to analyze water quality data collected between 2016 and 2021
from two continuous water-quality monitors located along the upper Klamath River.
It flows 250 miles from Keno dam to the Pacific Ocean. The upstream reach including
Keno and Miller are the most polluted reach. Sometimes oxygen in this stretch can go
to zero which is not good for aquatic life, and Fish kills happens.

It was in the news that Federal Energy Regulatory Commission has approved removing
some dams from the downstream of the Klamath River. When this happens, they are
expecting to repopulate Salmon in the upper region, and they are expecting it to head
water stream. But the middle stretch is a blocker because of poor water quality.

This reach is outfitted with some continuous monitor to look at the water quality over
time. There are some wastewater treatment plants near Klamath Falls as well as agri-
cultural inputs. However, the big water quality driver is the algae from the upper
Klamath Lake. Dense bloom in the summer that flows up into this river. In the mid-
dle stretch the algae decay and die and settle at the bottom and in this process, they
consume a lot of oxygen. There is no algae data available for the current study.(1)

0.2.1 Some key terms:
Thermal Stratification:

Thermal stratification is the vertical layering of water in a body of water with different
temperatures, which leads to a depletion of oxygen in the lower layer and creates a toxic
environment, but factors like wind and large flows can reduce the toxic environment
and increase dissolved oxygen, making it crucial to understand and manage thermal
stratification for river health.

Auto-correlation:

Auto-correlation measures the correlation between current and past/future values in a
time series, and it’s important to consider in statistical analyses as it can affect the
validity of results and lead to incorrect conclusions; ACF plot, PACF plot, and Durbin-
Watson tests are some tools used to check auto-correlation.



0.2.2 Goal

The primary objective of this study is to develop methods and models that address
several key questions related to the thermal stratification of the water column in the
upper Klamath River.

The questions being posed include:

e How do various weather conditions near the Klamath River and river flow influ-
ence the thermal stratification of the water column?

e What constitutes an appropriate threshold level for defining thermal stratifica-
tion?

e What are the weather conditions and approximate dates of the year when re-
verse thermal stratification occurs, as well as the approximate dates when the
stratification reverts to positive?

e At which hours of the day is temperature stratification at its peak, and when is
the river at its most unstratified state?

By establishing appropriate methods to address these questions, the research seeks to
enhance our understanding of the thermal stratification dynamics within the upper
Klamath River.

0.3 Data Acquisition and Processing

The United States Geological Survey (USGS) provided four distinct datasets for this
study. The first dataset, sourced from the Agrimet program managed by the United
States Bureau of Reclamation (USBR), contains detailed hourly weather data collected
in close proximity to the USGS sensor locations. The Agrimet dataset includes mea-
surements on air temperature, relative humidity, wind direction, peak wind gust, wind
speed, solar radiation, and precipitation. It is essential to note that the Agrimet weather
data is reported in local time (Mountain and Pacific time zones), and all temperature
values they collect are in Fahrenheit.(2) However, the USGS reports temperatures in
Celsius, therefore Agrimet temperatures were converted into Celsius for the purposes of
this study. The second dataset, the USGS Link River flow data, provides site numbers
and river flow rates measured at 15-minute intervals. The final two datasets pertain to
water quality data from Miller Island and Keno Island. Both datasets were collected
using two probes positioned at each site, with one probe situated near the surface and
the other close to the bottom of the river. Hourly (and occasionally half-hourly) water
quality measurements were gathered for both the upper and lower probes, capturing
data for variables such as water temperature, specific conductance, dissolved oxygen,
pH, date, and site number.

During the data preparation stage for analysis, two major challenges were addressed.
The first involved identifying and managing missing values according to the client’s
specifications. This entailed excluding data points from the analysis if crucial infor-
mation, such as water temperature, weather, or flow data, exhibited more than three



consecutive missing values. All other missing data were treated using linear inter-
polation. The second challenge was the merging of data from multiple sources. To
accomplish this, several functions were devised to process and manipulate data from
the four datasets. These functions initially facilitated the merging of low and weather
data into a single dataset based on their timestamps. Additionally, water quality data
was consolidated by combining upper and lower river data using shared timestamps,
rounded within a five-minute interval to the nearest hour. Following this, the water
data was integrated with the previously merged flow and weather data, culminating
in a comprehensive dataset for both Keno and Miller data, encompassing all predictor
and response variables. To examine seasonal, monthly, and hourly variations in the
data, supplementary columns were generated representing these temporal variables us-
ing timestamps. Moreover, two additional columns were created: one to convert wind
direction into 16 cardinal directions and another to apply the sine function to the wind
direction. The performance of these transformed variables can be tested to determine
which one is better suited for the models.

0.4 Exploratory data analysis

To gain a deeper understanding of the data and identify patterns, trends, and poten-
tial issues, an exploratory data analysis was performed, supplemented by various data
visualization techniques. The initial step involved generating a heatmap to reveal cor-
relations between predictor variables and to detect any multicollinearity. In Figure 1,
a strong positive correlation between wind gust and wind speed can be observed, along
with a strong negative correlation between humidity and air temperature, and between
humidity and solar radiation for Miller dataset. Figure 8 in Appendix also shows the
same result for Keno. To address the issue of multicollinearity, a generalized additive
model and concurvity were employed, which will be discussed in a later section.

Figure 1: Correlation plot between predictors for Miller



Given the seasonal nature of the data, the dataset was divided into four distinct
seasons: Winter, Spring, Summer, and Fall. Box plots were created for each season to
identify any outliers that might affect the analysis. As illustrated in Figure 2 and 3,
some outliers were detected for Miller dataset and also we got very similar result from
Keno as illustrated in Figure 9 and 10 in Appendix; however, the client chose not to
address this issue.

Figure 3: boxplot for fall and Winter for Miller

Moreover, an analysis of the 2016-2021 period was conducted using the Agrimet weather
data obtained from the USGS. This investigation revealed a sharp decline in average
air temperature in the Klamath River area from 2018 to 2019, with 2019 registering
as the coolest year for average air temperature in the region, based on the available
data. Subsequently, the average air temperature began to rise at an accelerating rate,
culminating in 2021 as the year with the highest average air temperature recorded in
the provided data.

In Figure 5, a sharp increase in precipitation is observed, which exhibits a negative
correlation, or an inverse relationship, with air temperature. This correlation is further
confirmed in the heatmap (Figure 1) when examining humidity against air temperature.
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0.5 Methods

0.5.1 Defining the Threshold for Thermal Stratification:

One of the primary objectives of this study is to establish a threshold temperature dif-
ference for thermal stratification in the Klamath River. The process begins by analyzing
the distribution of the temperature difference variable within the dataset. Examining
this distribution allows for the identification of a suitable threshold value that separates
distinct groups or behaviors in the data. For instance, Figure 6 displays the distribution
of temperature differences for the summer season. There are several general guidelines
that can aid in selecting an appropriate threshold for temperature differences:

1. Identifying gaps or natural breaks in the histogram: If there is a clear gap between
groups of bars in the histogram, this may be an ideal location for setting the
threshold.

2. Determining the peak(s) in the histogram: If the histogram exhibits one or more
peaks, consider placing the threshold between these peaks, particularly if the
peaks represent different behaviors or phenomena.

3. Experimenting with various thresholds: Testing different thresholds and evaluat-
ing their effectiveness in separating the data into meaningful groups or categories



can provide valuable insights. Additional analyses, such as clustering or classifi-
cation algorithms, can be employed to further refine the choice of threshold.
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Figure 6: Miller Density plot for temperature difference in Summer

As depicted in Figure 6, the density plot for temperature differences in the summer
season can be analyzed to identify potential thresholds. In addition to examining
the distribution, clustering algorithms, such as K-means clustering, can be used to
determine the choice of threshold. K-means is an unsupervised learning algorithm that
aims to partition the data into K clusters. In this case, the goal is to divide the data
into two clusters: stratified and unstratified. Since the objective is to find a threshold
for temperature differences (temp-diff), only the "temp-diff’ column is used as a feature
for K-means clustering. Once the cluster centroids are obtained, the threshold can be
calculated as the midpoint between the two centroids, providing a well-defined criterion
for thermal stratification.
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Figure 7: Miller Scatter plot of the 'temperature difference’ cluster in Winter



0.5.2 Impact of weather conditions and river flow on the ther-
mal stratification of the water column:

To study impact of weather conditions and water flow we explored Generalized additive
models and Random forest. We will discuss why these two methods are a good fit in
brief in this section.

GAM(generalized additive model):

A generalized additive model (GAM) is a statistical model that extends the capabili-
ties of generalized linear models by allowing the estimation of complex nonlinear rela-
tionships between predictor variables and response variables. Unlike traditional linear
models, GAMs do not assume a simple weighted sum relationship, but instead assume
that the outcome can be modeled by a sum of arbitrary functions of each predictor fea-
ture. The relationship in a GAM is mathematically represented by a link function that
establishes a relationship between the mean of the response variable and a smoothed
function of the explanatory variable(s), which can be specified either parametrically or
non-parametrically.

9By (ylr)) = Bo + f1(x1) + fa2(xa) + . 4+ £,(xp) (1)

Smooth functions in GAMs are represented as a sum of smaller basis functions, which
capture nonlinear or time-dependent features of the data. GAMs can incorporate cat-
egorical variables, which allows for modeling of interactions between continuous and
categorical predictors. GAMs have some limitations, including the potential to over-
fit the data, challenges in selecting appropriate basis functions, and computational
expenses. Violations of model assumptions can also lead to biased or inefficient es-
timates. However, GAMs remain a useful tool for modeling nonlinear relationships
between predictors and response variables in a flexible and interpretable manner.
Generalized additive mixed model(GAMMS) is an extension of GAM which gives a flex-
ibility to work with correlated errors by defining suitable variance-covariance matrix.

0.5.3 Random forest:

Random Forest is a versatile algorithm for classification and regression tasks that com-
bines multiple decision trees to create a more accurate and robust model. Known for
its ability to handle complex datasets and its resilience to noise and outliers, it re-
quires minimal feature engineering. The algorithm reduces overfitting and improves
generalization by training decision trees on bootstrapped subsets of data and aggre-
gating their predictions. Random forest is also a highly effective model for managing
non-linear data, as well as addressing the inherent multicollinearity often present when
working with weather and temporal data. The Random forest model can be mathe-
matically represented as: ygpp = % Efle Ym (), where ygp is the predicted output of
the Random Forest model, M is the number of decision trees in the ensemble, y,,(x) is
the predicted output of the mth tree for input z, and the summation is taken over all
trees in the ensemble.(3) The randomForest model in R provides several metrics that
can be used to assess the success of a given Random Forest model and to gain insight



on how important each predictor is for the model(4). The four main metrics provided
by this library are outlined below:

1.

Var explained: Derived from the Mean Squared Error (MSE) and the out-of-bag
(OOB) predictions in the Random Forest model, a higher value for this metric
indicates a better fit of the model to the data.

. Mean of squared residuals: This metric represents the squared differences between

the observed values and the predicted values for the response variable. A lower
value indicates a better fit of the model to the data, as the model’s predictions
are closer to the actual values.

. IncMSE (Percentage Increase in Mean Squared Error): This metric demonstrates

the importance of a factor in the model. It is calculated by altering a factor’s
values to assess how much it throws off the predictions. A higher value means the
factor is more crucial for accurate predictions.

. IncNodePurity (Increase in Node Purity): This metric emphasizes the importance

of each factor for precise classifications and predictions. A higher value indicates
that the factor plays a more prominent role in enhancing the model’s predictive
performance.

0.5.4 Detecting Reverse Stratification Starting Date:

We have developed an R function that streamlines the process of identifying reverse
stratification occurrences. This function performs the following steps:

1.

2.

Accepts a merged data frame and a span length in days as inputs.

Decomposes the timestamp into individual components: date, year, month, and
day.

Calculates daily averages for variables such as temperature difference, flow, air
temperature, and wind speed, allowing for the addition or removal of predictors
as needed.

. Computes the average of these variables over the specified span, with a default

two-week period as an example.

. Identifies the day in each year when the span-average temperature difference tran-

sitions from positive to negative.

. Returns a data frame containing these dates, along with the span-average values

for temperature difference, flow, air temperature, and wind speed, enabling the
analysis of weather and flow conditions at the time of the change.

This method yields results indicating the specific day when the change occurs, as well
as the average weather and flow conditions leading up to the event. To identify when
thermal stratification reverts to positive, a similar approach can be employed, with
the only modification being in step 5, where the transition from negative to positive is
detected instead of positive to negative.



0.5.5 Detecting Intermittent Stratification:

Utilizing the provided merged dataset, we can employ the R functions group_by and
summarise to aggregate the data by specific columns, such as hour, and subsequently
compute the mean temperature difference. This process returns a data frame featuring
each unique hour present in the dataset, along with the corresponding average temper-
ature difference calculated over the entire dataset. Additionally, incorporating season
or month alongside the hour allows for the examination of these averages across dif-
ferent seasons or months, depending on the intended analysis objectives. The hours
with largest averages indicates the hours with greatest stratification. The hours with
averages closest to zero indicate the hours that are most unstratified.

0.6 Result

GAM: In a GAM analysis, we examined the influence of time, air temperature, wa-
ter flow, wind speed, wind direction, and precipitation on thermal stratification. We
established a response variable as the difference in water temperature recorded by two
sensors simultaneously.

We defined a variable 'weekday,” which represents the day of the week. As indicated in
the literature, thermal stratification can be impacted by the quantity of dissolved parti-
cles or pollutants. We hypothesize that this could exhibit seasonality within weekdays.
Each year may have a random effect on thermal stratification due to unique weather
conditions specific to that year. We utilized a nonlinear temporal term to model the
interaction of month, weekday, and hour, as there are seasonal effects influencing the
EUI, such as weather or a higher quantity of pollutants. We established a non-linear
interaction for air temperature (Figure 12), water flow (figure 13), precipitation, wind
speed, and wind direction, as these features exhibit seasonal variations with the time
of year and day.

Figure 14 demonstrates that the model assumes a Gaussian or normal distribution of
errors, and the "Link” of ”identity” indicates that the model does not transform the
predictions. The effective degrees of freedom (edf) must be calculated to approximate
the actual degrees of freedom for inference purposes. The edf represents the complexity
of the smooth, with higher edfs describing more "wiggly” curves. The Ref.df and F
columns are used in an ANOVA test to assess the overall significance of the smooth,
with the p-value indicating the result of this test. The GAM’s smooth terms are plotted
in figures 15, 16, 17, 18, 19, 20, and 21 illustrating the seasonality of water temperature
difference over the interaction of month, hour, and weekday. GAM plots for water flow
(Figure 18) and air temperature (Figure 19) reveal that flow and air temperature have
a non-linear relationship with water temperature difference. Figure 15 shows that the
stratification is significant between late spring and early fall during early morning hours
and late evening. It also shows significant reverse stratification between late fall and
early winters .

To ensure well-fit models, it is necessary to avoid several pitfalls when fitting GAMs,
such as ensuring the correct number of basis functions to account for wiggly data and
normality assumptions. Figure 22 displays the output from gam.check(), which reports
on model convergence, demonstrating full convergence in this case. The table of basis
checking results indicates a statistical test for patterns in model residuals, which should
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be random. P-values greater than the level of significance suggest that residuals are
not randomly distributed, indicating that the number of basis functions needs to be
increased.

Furthermore, we must verify if concurvity exists between our smoothed variables, which
refers to linear dependence between smooths. Figure 21 exhibits the concurvity, with
values higher than the conventional value of 0.8 indicating the presence of concurvity
and potentially inaccurate results.

Lastly, the outcomes of Figure 23 present the standard checks for the normality as-
sumption of the error terms. If the normality assumptions are not met, potential fixes
include increasing the number of basis functions, altering the link function, or applying
a transformation on the response, such as a log transformation.

Random Forest: In this example analysis, as shown in Figure 25, a Random Forest
model was implemented using the randomForest library and function in R. The re-
sponse variable, temperature difference, was modeled as a function of several predictor
variables, including flow, cardinal wind direction, air temperature, wind speed, month,
and hour. The model was trained on the keno dataset, with an ensemble of 501 decision
trees and the importance of each variable set to true.

To evaluate the model’s performance, we refer to the metrics outlined in the meth-
ods section. Firstly, a percentage of variance explained of 87.68% suggests that the
model accounts for a substantial portion of the variance in the response variable, indi-
cating a good fit to the data. A mean squared residuals value of 0.072 demonstrates
that the model is accurate in making predictions, as it measures the squared differences
between the observed and predicted values of the response variable.

The other metrics assess the importance of each predictor variable, as shown in Figure
8 below. The hour predictor ranks second in %IncMSE and third in IncNodePurity,
implying its importance in the model. In contrast, the cardinal wind direction has
relatively lower %IncMSE and IncNodePurity values, indicating it is less significant
compared to the other predictors. Air temperature has the highest %IncMSE and In-
cNodePurity, signifying it as the most critical predictor in the model. Wind speed
exhibits the lowest %IncMSE and a relatively lower IncNodePurity, suggesting it is the
least important predictor among the variables. The month variable holds a moderate
%IncMSE and the second-highest IncNodePurity, implying its importance in the model.
The flow variable has third highest %IncMSE and third lowest IncNodePurity values,
indicating its in the middle of significance in the model.

In summary, this Random Forest model demonstrates strong performance with an ex-
plained variance of 87.68%. Air temperature emerges as the most important predictor,
followed by flow and hour. Month also holds considerable importance, while cardinal
wind direction and wind speed are less influential predictors in the model.

Reverse Stratification: The example analysis used the R function provided, taking
in the merged Keno dataset and a span of 14 days. As shown in figure 26, the starting
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date for reverse stratification occurred as early as 11/19 (2020) and as late as 12/07
(2017). The results from reverse stratification back to stratification have it occurring
as early as 01/25 (2017) to as late as 03/06 (2019)

Intermittent Stratification: For this example, as shown in Figure 27, only hours
and averages are shown. The hours with highest temperature difference are between
4pm and 6pm, and the hours closest to zero are between 7am and 9am.

0.7 Recommendations

Cleaning and merging data: We suggest cleaning each of the four data sets prior to
merging them. Many water quality data points were recorded at the 59th minute of the
hour, so it is advisable to round timestamps to the nearest hour within a five-minute
window to retain these data points. After rounding, the data sets can be merged using
exact timestamps. By consolidating all response and predictor data into a single data
frame, the process of running models in R is simplified. New columns can be created to
analyze seasonal, monthly, and hourly variations. We recommend transforming wind
direction into cardinal wind directions or applying the sine function to account for its
cyclical nature. Furthermore, it is advisable to convert seasonal, monthly, hourly, and
cardinal wind directions into factors, as they possess a categorical nature.

Running models: When implementing GAM and Random Forest models, it is cru-
cial to avoid incorporating predictor variables that exhibit high correlations with one
another to prevent unnecessary multicollinearity. We suggest examining the provided
correlation matrix for predictors and avoiding combining those with higher correlations
with the other predictors. For instance, it is not advisable to combine solar radiation,
air temperature, or humidity within the same model. Instead, test each one indepen-
dently, excluding the other two, and assess which variable produces the best results
based on metrics such as adjusted R-squared value for GAM or the percentage of vari-
ance explained for Random Forest.

To gain a deeper understanding of the influence each predictor has on the response
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variable, individual models can be run with a single predictor at a time. The more sig-
nificant a predictor’s impact on the response variable, the higher the adjusted R-squared
value or explained variance. A common approach for developing a comprehensive sta-
tistical model involves what is called forward selection, which is a type of stepwise
regression (5). In forward selection, predictors are added one at a time to the model,
starting with the predictor that has the highest adjusted R-squared value. At each step,
the predictor that results in the largest increase in adjusted R-squared is chose, and
the process is repeated until no further significant improvement in adjusted R-squared
is observed or there are no more predictors to add.

0.8 Conclusion

In conclusion, traditional regression techniques are often inadequate for dealing with
time series data due to autocorrelation and their limitation to linear relationships.
Instead, Generalized Additive Models (GAMs) have emerged as a viable alternative for
modeling nonlinear relationships and capturing complex patterns in time series data,
much like Random Forest. Additionally, we recommend analyzing the distribution of the
temp-diff variable and employing K-means clustering can aid in defining an appropriate
threshold for thermal stratification.
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Figure 12: Air-temperature and Water temperature difference for training data

S 1 —— Water Flow vs datevalue '
- —- Water temp. diff vs datevalue
[e.0]
S
(o]
=
<
O b’
2

o~ f 1% 1B

0111 PRI |
o _ ._-L_]'“"_ ) _ml_ |
o

1450000 1500000 1550000 1600000

Figure 13: Water flow and Water temperature difference for training data
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> summary(model2_gamm$gam)

Family: gaussian
Link function: identity

Formula:

logshift_water_temp_diff
bs = "re") + s(flow)
s(wind_direction, bs

te(month, weekday, hour) + s(year,
sCair_temp) + s(wind_speed) + s(precipitation) +
"ee™

o+ 2

Parametric coefficients:
Estimate Std. Error t value Pr>1tl)
(Intercept) 0.5792492357673120207 @.0042595796184736112 135.98741999999999 < 0.000000000000000222 ***

Signif. codes: 0 ‘*¥*¥*¥’ 0.0010000000000000000208 ‘**’ 0.010000000000000000208 ‘*’ 0.050000000000000002776 .’
0.10000000000000000555 ¢ ’ 1

Approximate significance of smooth terms:

edf Ref.df F

te(month,weekday,hour) 47.9219043127399473291916365270 47.9219043127399473 115.2688200000000052
s(year) 0.0000000000094546959550135435 1. Q.
s(flow) 6.2800184575503799067064392148 6.2800184575503799 34.7067899999999980
sCair_temp) 7.5553371649325065106950205518 7.5553371649325065 153.4656699999999887
s(wind_speed) 5.7323959878872372541991353501 5.7323959878872373  8.2526799999999998
s(precipitation) 1.0000000219937565937300405494 1.0000000219937566  1.6141799999999999
s(wind_direction) 1.5715520728029748198650850100 8.0000000000000000  ©.3997000000000000

p-value
te(month,weekday,hour) < 0.0000000000000002 ***
s(year) 0.25674
s(flow) < 0.0000000000000002 ***
sCair_temp) < 0.0000000000000002 ***
s(wind_speed) < 0.0000000000000002 ***
s(precipitation) 0.20392
s(wind_direction) 0.10475

Signif. codes: 0 ‘*¥*¥*¥’ 0.0010000000000000000208 ‘**’ 0.010000000000000000208 ‘*’ 0.050000000000000002776 .’
0.10000000000000000555 ¢ ’ 1

Figure 14: Output from summary of GAM
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Figure 15: Effect of (month, weekday, hour) interactions on water temperature differ-
ence at bottom and surface layers
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Figure 16: Effect of year on water temperature difference at bottom and surface layers
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Figure 17: Effect water flow on water temperature difference at bottom and surface
layers
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Figure 19: Effect wind speed on water temperature difference at bottom and surface
layers
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Figure 20: Effect wind direction on water temperature difference at bottom and surface
layers
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Figure 21: Effect precipitation on water temperature difference at bottom and surface
layers
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Figure 22: Checking for autocorrelation

> gam. check(model2_gamm$gam)

'gamm' based fit - care required with interpretation.
Checks based on working residuals may be misleading.
Basis dimension (k) checking results. Low p-value (k-index<l) may

indicate that k is too low, especially if edf is close to k'.

te(month,weekday,hour) 124.00000000000000

s(year)

s(flow)
sCair_temp)
s(wind_speed)
s(precipitation)

s(wind_direction)

Signif. codes:

1

k' edf k-index
47.92190431273995 0.93

. 0. 94 0.99
9.00000000000000 6.28001845755038 0.90
9.00000000000000  7.55533716493251 0.84
9.00000000000000 5.73239598788724 0.91
9.00000000000000 1.00000002199376 1.00
8.00000000000000 1.57155207280297 0.89

0.10000000000000000555 “ ° 1

Figure 23: Concurvity of model variables

> gam. check(model2_gamm$gam)

'gamm' based fit - care required with interpretation.
Checks based on working residuals may be misleading.
Basis dimension (k) checking results. Low p-value (k-index<l) may

indicate that k is too low, especially if edf is close to k'.

K'

te(month,weekday,hour) 124.00000000000000

s(year)

s(flow)
sCair_temp)
s(wind_speed)
s(precipitation)

s(wind_direction)

Signif. codes:

1.00000000000000
9.00000000000000
9.00000000000000
9.00000000000000
9.00000000000000
8.00000000000000

»

7
0
6
7
5
1
1

0 “***’ 0.0010000000000000000208 ‘**’ 0.010000000000000000208

edf k-index
.92190431273995 0.93
.00000000000945 0.99
.28001845755038 0.90
.55533716493251 0.84
.73239598788724 0.91
.00000002199376 1.00
.57155207280297 0.89

p-value
<0.0000000000000002
0.28
<0.0000000000000002
<0.0000000000000002
<0.0000000000000002
0.54
<0.0000000000000002

p-value
<0.0000000000000002
0.28
<0.0000000000000002
<0.0000000000000002
<0.0000000000000002
0.54
<0.0000000000000002
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*
*
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‘¥’ 0.050000000000000002776 .’

0.0010000000000000000208 ‘**’ 0.010000000000000000208 ‘*’ 0.050000000000000002776 *.’
0.10000000000000000555 ¢ ’ 1

Figure 24: Output from gam.check()
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Call:

randomForest(formula =

air_temp + wind_speed + month + hour, data
importance = TRUE)

501

No. of variables tried at each split: 2

Type of random forest: regression
Number of trees:

Mean of squared residuals: 0.07255585
% Var explained: 87.64
> importance(rf_keno)

%INcMSE IncNodePurity

1748.0533

923.1549
4937.0309
1079.7295
2599.3811
1763.9884

temp_diff ~ flow + card_wind_direction +
keno_data, ntree =

501,

Figure 25: Output from Random Forest

flow 151.10639
card_wind_direction 136.61564
air_temp 166.37493
wind_speed 99.44637
month 125.15474
hour 161.38016
> pos_to_neg

year
1 2016 2016-12-05 -0.005952381
2 2017 2017-12-07 -0.015476190
3 2018 2018-11-27 -0.003571429
4 2019 2019-12-01 -0.011994427
5 2020 2020-11-19 -0.012304020
6 2021 2021-12-01 -0.001124798
> neg_to_pos

year date span_avg_temp_diff

U A WN R

2016 2016-01-30
2017 2017-01-25
2018 2018-02-06
2019 2019-03-06
2020 2020-02-21
2021 2021-02-25

0.003571429
0.002380952
0.009523810
0.002380952
0.002793951
0.003723307

1261.5034

span_avg_flow

638.4167
453.0119
4453095

659. 8099
893.9610

386.0595
668.6190
684.9881
428.8214
481.2089
478.3060

0.2562831

-0.3408069

2.8710317

-0.6639418

2.5750984
2.5492215

span_avg_air_temp

1.9287037

-3.2124339

2.9503968
0.1712963
1.5194851
1.0142149

date span_avg_temp_diff span_avg_flow span_avg_air_temp span_avg_wind_speed

4.300595
3.392024
4.016905
5.254244
5.847630
2.270288

span_avg_wind_speed
4.481071
4.,964881
3.918095
6.058810
3.705663
4.845751

Figure 26: Output date changes for reverse stratification

22



hour average_temp_diff

(" 0.452169707
1 @.393333333
2 0.410638298
3 0.096774194
4 0.221570549
) 0.110000000
6 0.160616438
7 -0.003076923
8 0.098298924
9 0.050000000
10 @.155769231
11 0.976923077
12 0.324180556
13 0.270370370
14 0.555046948
15 0.393846154
16 0.778027415
17 0.819117647
18 0.872027972
19 0.403278689
20 0.749650864
21 0.648000000
22 0.623379630
23 0.271641721

Figure 27: Output hours and average temperatures
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